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Marginalized graph kernel for learning on graphs
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Scientific machine learning is key to DOE technological advances

Scientific machine learning (SciML) is a core component of artificial 

intelligence (AI) and a computational technology that can be trained, with 

scientific data, to augment or automate human skills. Across the Department 

of Energy (DOE), scientific machine learning (SciML) has the potential to 

transform science and energy research.

DOE Basic Research Needs Workshop for Scientific Machine Learning:

Core Technologies for Artificial Intelligence 2019
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The successes of scientific machine learning have concentrated 
on select forms of data

Literature information extraction

• Text data

• Linear sequence

• Weston et al. 2019 

Climate analytics

• Grid data

• Real values

• Kurth et al. 2018

Fluid Mechanics

• Mesh data

• Real values

• Raissi et al., 2020
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Many scientific data and representations are beyond mere 
images or linear sequences

Molecules Road network Social network Fragmentation tree
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Some icons made by Freepik from www.flaticon.com

Variable in size Non-sequential
Mixed 

continuous/discrete 
DOFs

Existing solutions often 
resort to pixelating the 

data.
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Graph is a powerful format for scientific data, but machine 
learning on graphs takes extra effort

• A graph is a structure that contains 

objects of pairwise relationships
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• Most existing ML methods work on 

feature vectors, images, and 

sequences only.
node

edge

color: node attribute

line: edge attribute

thickness: edge weight

directed
edge

Feature vector

Input layer

Hidden layers

Output layer

?
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Kernel method in machine learning: what, why, and how

A kernel is 
a function 

that

Implicitly transforms raw data into high-
dimensional feature vectors via a feature 

map; and then

Returns an inner product between the 
feature vectors.

Must be positive-definite.

A kernel is 
useful for

Factor out knowledge on data 
representation from downstream 

algorithms,

Exploit infinite dimensionality and 
nonlinear feature spaces.

Kernels are 
used in

Support vector machine (SVM), Gaussian 
process regression (GPR), Kernel principal 

component analysis (kPCA), etc.
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Many ML algorithms have a kernelized counterpart

𝑤𝑇𝜙 𝑥𝑛 + 𝑏

𝑤𝑇𝜙 𝑥𝑛

eig ΦTΦ

Euclidean distance

Project on random vectors
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∑𝑎𝑛𝑡𝑛𝑘 𝑥, 𝑥𝑛 + 𝑏

𝑘 𝑥 𝑇 𝐾 + 𝜆𝐼 −1𝑡

eig 𝑘(𝑥𝑖 , 𝑥𝑗)

Kernel-induced distance

Project on random samples

SVM

Ridge
Regression

PCA

Clustering

Random 
Projection



Office of
Science

Graph kernels are kernels that act on graphs

Graph 
kernels

Histogram
Limited-size subgraphs [Ahmed et al. 
2015]

Statistical moments [Debnath et al. 
1991]

Random walk
Exponential [Vishwanathan, 2010]

Geometric [Vishwanathan, 2010]

Marginalized [Kashima et al., 2003]

Weisfeiler-
Lehman

[Shervashidze et al. 2011]

[Morris et al. 2017]

Misc.
Shortest-path [Borgwardt and Kriegel, 
2005]

Spanning tree [Ramon and Gärtner, 2003]

10
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G2

inner
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The marginalized graph kernel can seamlessly handle diverse 
types of graphs

• Definition: the inner product between two graphs is the statistical average of the 

inner product of simultaneous random walk paths on the two graphs.
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Compare

Graph A

Graph B

0.60.4

0.30.2

0.5

Graph A

Graph B

0.9

0.9

0.5

0.3

0.4 0.6
0.7 0.2

Use edge weight to set 
transition probability

𝑝 = 0.4

𝑝 = 0.6

𝑝 = 0.2

𝑝 = 0.3

𝑝 = 0.5

𝑝 = 0.4 × 0.9 = 0.36

𝑝 = 0.6 × 0.9 = 0.54

𝑝 = 0.2 × 0.5 = 0.10

𝑝 = 0.2 × 0.4 = 0.08

𝑝 = 0.3 × 0.3 = 0.09

𝑝 = 0.3 × 0.6 = 0.18

𝑝 = 0.5 × 0.7 = 0.35

𝑝 = 0.5 × 0.6 = 0.30

Sample paths

Length=1 Length=2
Step 1

Define random walks

𝑃 = 𝐷−1 ⋅ 𝐴

P: transition matrix

D: degree matrix

A: adjacency matrix



Office of
Science

• Definition: the inner product between two graphs is the statistical average of the 

inner product of simultaneous random walk paths on the two graphs.

The marginalized graph kernel can seamlessly handle diverse 
types of graphs
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Graph inner 
product/similarity

probabi
lity

Edge-
wise 

compar
ison

Node-
wise 

compar
ison

Step 2
Averaging path 

similarities

Path similarity defined 

as product of base 

kernel evaluations

𝜅v: base kernel for nodes

𝜅e: base kernel for edges

vs = 𝜿𝐯
, ⋅ 𝜿𝐞

, ⋅ 𝜿𝐯
,
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Wider adoption of the marginalized graph kernel was hindered 
due to practical challenges

Cost of 
computation 
could be high

• direct summation is 
intractable

Efficient training 
involving 
composite base 
kernels 𝐾v, 𝐾e is 
non-trivial

• Analytic derivative 
of the kernel is 
difficult to derive 
and implement
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𝐾 𝐺, 𝐺′ = ෍

𝑙=1

∞

෍

𝒉

෍

𝒉′

𝑝s ℎ1 𝑝s
′ ℎ1

′ 𝑲𝒗 𝑣ℎ1, 𝑣ℎ1′
′ ෑ

𝑖=2

𝑙

𝑝t ℎ𝑖|ℎ𝑖−1 𝑝q ℎ𝑙 ෑ

𝑗=2

𝑙

𝑝t
′ ℎ𝑗

′|ℎ𝑗−1
′ 𝑝q

′ ℎ𝑙
′ ෑ

𝑘=2

𝑙

𝑲𝒆 𝑒ℎ𝑘−1ℎ𝑘 , 𝑒ℎ𝑘−1
′ ℎ𝑘

′ 𝑲𝒗 𝑣ℎ𝑘 , 𝑣ℎ𝑘
′

′



Office of
Science

Linear algebra reformulation simplifies computations and reveals 
opportunities for optimization
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𝐾 𝐺, 𝐺′ = ෍

𝑙=1

∞

෍

𝒉

෍

𝒉′

𝑝s ℎ1 𝑝s
′ ℎ1

′ 𝑲𝒗 𝑣ℎ1, 𝑣ℎ1′
′ ෑ

𝑖=2

𝑙

𝑝t ℎ𝑖|ℎ𝑖−1 𝑝q ℎ𝑙 ෑ

𝑗=2

𝑙

𝑝t
′ ℎ𝑗

′|ℎ𝑗−1
′ 𝑝q

′ ℎ𝑙
′ ෑ

𝑘=2

𝑙

𝑲𝒆 𝑒ℎ𝑘−1ℎ𝑘 , 𝑒ℎ𝑘−1
′ ℎ𝑘

′ 𝑲𝒗 𝑣ℎ𝑘 , 𝑣ℎ𝑘
′

′

• According to Kashima & Tsuda, the above 

computation can be simplified into

𝐾 𝐺, 𝐺 ′ =෍

ℎ

෍

ℎ′

𝑠 ℎ1, ℎ1
′ 𝑅∞ ℎ1, ℎ1

′

where

𝑠 ℎ1, ℎ1
′ = 𝑝s ℎ1 𝑝s

′ ℎ1
′

𝑅∞ ℎ1, ℎ1
′ = 𝑟1 ℎ1, ℎ1

′ +෍

𝑖,𝑗

𝑡 𝑖, 𝑗, ℎ1, ℎ1
′ 𝑅∞ ℎ1, ℎ1

′

with

𝑡 𝑖, 𝑗, ℎ1, ℎ1
′ = 𝑝𝑡 𝑖 ℎ1 𝑝𝑡

′ 𝑗 ℎ1
′ 𝐾v 𝑣𝑖 , 𝑣𝑗

′ 𝐾e 𝑒𝑖ℎ1 , 𝑒𝑗ℎ1′

• We showed that the formulation is equivalent to 

the following tensor product linear system:

𝐾 𝐺, 𝐺′ = 𝒑× ⋅ 𝐑∞

where 𝑅∞ can be solved from

𝐃×𝐕×
−1 − 𝐀× ⊙𝐄× 𝐑∞ = 𝐃× 𝐪×.

𝑝×𝑖𝑗 = 𝑝𝑠 𝑖 𝑝𝑠
′ 𝑗 , 𝑞×𝑖𝑗 = 𝑝𝑞 𝑖 𝑝𝑞

′ 𝑗

diag(𝐷×)𝑖𝑗 = deg 𝑣𝑖 deg 𝑣𝑗
′

diag(𝑉×)𝑖𝑗 = 𝐾v 𝑣𝑖 , 𝑣𝑗
′

𝐴×𝑖𝑗𝑘𝑙 = 𝑤𝑖𝑗𝑤𝑘𝑙
′

𝐸×𝑖𝑗𝑘𝑙 = 𝐾𝑒(𝑒𝑖𝑗 , 𝑒𝑘𝑙
′ )

multi-index:    𝑖𝑗: element at 𝑖 ⋅ 𝑛′ + 𝑗 𝑖𝑗𝑘𝑙: element at (𝑖𝑗, 𝑘𝑙)
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Linear algebra reformulation simplifies computations and reveals 
opportunities for optimization

• The marginalized graph kernel in linear algebra form represents a modified graph 

Laplacian
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Tang & de Jong, J Chem Phys, 2019: Prediction of 
atomization energy using graph kernel and active learning

https://doi.org/10.1063/1.5078640

https://doi.org/10.1063/1.5078640
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Linear algebra reformulation simplifies derivation of analytic 
derivatives

• The gradient of the marginalized graph kernel is crucial for efficient training

• It can be derived using matrix calculus:

𝐾 𝐺, 𝐺′ = 𝐩×
T 𝐃×𝐕×

−1 − 𝐀× ⊙𝐄×
−1 𝐃× 𝐪×

Denote

𝐘 = 𝐃×𝐕×
−1 − 𝐀× ⊙𝐄×

Then

𝜕𝐾

𝜕𝜃
= tr

𝜕𝐾

𝜕𝐘
⋅
𝜕𝐘

𝜕𝜃
= 𝐘−1𝐩×

𝑇
𝜕𝐘

𝜕𝜃
𝐘−1𝐃×𝐪×

Differentiation w.r.t. other hyperparameters can be derived similarly.
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• Prediction of molecular atomization 

energy

• nodes = atoms, edges = interatomic interactions

• Jump probabilities proportional to edge weights, 

which decay with interatomic distance

e.g. 𝑤𝑖𝑗 = 1 −
𝑟𝑖𝑗

𝑟𝑐

n

• Kronecker delta kernel on nodes labeled with 

chemical elements

e.g. 𝜅v 𝑣1, 𝑣2 = ቊ
1, if 𝑣1 = 𝑣2
ℎ, otherwise

etc.

• Gaussian kernel on edges labeled by interatomic 

distance

e.g. 𝜅e 𝑙1, 𝑙2 = exp −
1

2

𝑙1−𝑙2
2

𝜎2

Marginalized graph kernel has found successful applications in a 
variety of ML tasks

17

Tang & de Jong, J Chem Phys, 2019: Prediction of 
atomization energy using graph kernel and active learning

https://doi.org/10.1063/1.5078640

https://doi.org/10.1063/1.5078640
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• Quality assurance on noisy chromatography data

Marginalized graph kernel has found successful applications in a 
variety of ML tasks

18

Tang et al. Uncertainty Quantification and Outlier Detection on Noisy Data. Manuscript in preparation.
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• Protein function prediction

Marginalized graph kernel has found successful applications in a 
variety of ML tasks

19

Borgwardt, K. M., Ong, C. S., Schö nauer, S., Vishwanathan, S. V. N., Smola, A. J., & Kriegel, H.-P. (2005). Protein function prediction via graph kernels. 
Bioinformatics, 21(suppl_1), i47–i56. https://doi.org/10.1093/bioinformatics/bti1007
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The marginalized graph kernel equation can be efficiently solved 
using conjugate gradient

• The conjugate gradient algorithm can be 

used to iteratively solve the marginalized 

graph kernel equation

• V and E are not necessarily real matrices

• 𝜅 can be complex functions
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Naïve CG on precomputed matrices can only handle small graphs
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• Due to the tensor product structure of the 

linear system, memory usage grows in 

quartic order

To compute similarity between a pair of 1000-
node graphs, a system of 1000000×1000000 
(4TB) is involved.

𝟏𝟔 × 𝟏𝟔 𝟏𝟔 × 𝟏𝟔 𝟐𝟓𝟔 × 𝟐𝟓𝟔⊗ →
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Naïve CG on precomputed matrices is also memory-bound on 
GPUs

• NVIDIA Volta GPU requires more than 16 FLOPS per byte (64 FLOPS per float) 

arithmetic intensity to achieve peak performance
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On-the-fly Kronecker matrix-vector multiplication (XMV) can 
overcome storage and memory bandwidth difficulties

• Regenerates the product linear system on 
the fly by streaming 8-by-8 submatrices 
(tiles).

• Tiles staged in shared memory.

• Trade FLOPS for GB/s, but asymptotic 
arithmetic complexity stays the same.

On-the-fly Kronecker matrix-
vector multiplication (OTF XMV)

24

Tang, Selvitopi, Popovici & Buluc, IPDPS 2020: A High-
Throughput Solver for Marginalized Graph Kernels on 
GPU https://arxiv.org/abs/1910.06310
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OTF XMV achieves much higher FLOPS on dense graphs

• Microbenchmark on V100 with a dot product base kernel

25



Office of
Science

A 2-level hierarchical sparse matrix format ensures efficient 
memory usage

• Packing into compact format: performed on CPU 

as a preprocessing step

• Unpacking for OTF XMV: performed in parallel on 

GPU using bit magic + warp intrinsics

26

• Outer level: retain only non-empty tiles

• Inner level: use bitmap + compact 
storage format

2-Level sparsity exploitation
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A 2-level hierarchical sparse matrix format ensures efficient 
memory usage

• Heuristics for dynamic code path selection:

• If both tiles contain more than certain number of non-zero 

elements, treat them as dense matrices.

• Otherwise, compute only the non-zeros.
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• Outer level: retain only non-empty tiles

• Inner level: use bitmap + compact 
storage format

2-Level sparsity exploitation
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Specialized graph reordering algorithm improves efficiency of 
OTF XMV and 2-level sparse format

28

• Reduces # of non-empty sparse tiles

• Improves density of non-empty tiles

• Cost easily amortized by repeated 
pairwise graph kernel computations.

Partition-based graph 
reordering (PBR)
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The On-the-Fly GPU Solver Achieves Four Orders of Magnitude 
Speedup Over Existing Packages

• GraKeL: Cython, multi-threading

• GraphKernels: Python, no parallelization

29
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• Prediction of molecular atomization energy

Marginalized graph kernel has found successful applications in a 
variety of ML tasks

30

Tang & de Jong, J Chem Phys, 2019
Prediction of atomization energy using graph kernel and active learning

https://doi.org/10.1063/1.5078640
Graph kernel evaluation

https://doi.org/10.1063/1.5078640
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Marginalized graph kernel enables active learning of atomization 
energy in orders of magnitude less time than NN

• QM7: 7165 small organic molecules consisting of H, C, N, O, S, up to 23 atoms

• From scratch training time: N = 1000: 10 s training, 0.018 s/sample predicting, N = 2000: 40 s training, 

0.034 s/sample predicting

MAE: Mean Average Error

RMSE: Root-Mean Square Error

KRR: Kernel Ridge Regression

NN: Neural Network

GRAPE, SOAP, Coulomb, BoB: fingerprint algorithms

31
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pip install graphdot

Tang, Selvitopi, Popovici, Buluc, IPDPS 2020: A High-Throughput Solver for Marginalized Graph Kernels on GPU.
https://arxiv.org/abs/1910.06310

Manuscript in preparation: GraphDot: A GPU-Accelerated Python Package for Graph-Based Machine Learning.
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Graphs are useful data 
structures for 

representing scientific 
datasets.

The marginalized graph 
kernel is a very generic 

tool for machine learning 
on graphs.

Marginalized graph 
kernel can be computed 
very efficiently on GPUs

https://arxiv.org/abs/1910.06310

